<table>
<thead>
<tr>
<th>DATE</th>
<th>Topics</th>
<th>Topic Leader(s)/Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introduction to Conserved Biological Principles</td>
<td>Topic Leader: David Loose Instructors: Terry Walters Mike Lorenz David Loose John Byrne Ghislain Breton Jeff Chang</td>
</tr>
<tr>
<td>August 29-September 2</td>
<td>• Evolutionary Foundations of Biomedical Science • Value and Limitations of Model Systems • Growth and Reproduction: Normal Growth, Regeneration, Wound Healing, Regulatory Pathways • Homeostasis at the Cellular Level • Evolution of Nervous Systems and Homeostasis • Homeostasis at the Organismal Level; Vascular Systems and Homeostasis • Circadian Rhythms, Thermoregulation • System Level Integration, Polygenic Diseases</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Principles of Genetics and Modern Genomics</td>
<td>Topic Leaders: Craig Hanis Instructors: Bill Mattox Craig Hanis Mike Lorenz Myriam Fornage Nick Navin Richard Behringer</td>
</tr>
<tr>
<td>September 6-9</td>
<td>• Mutations and Gene Function • Human Genetics/Disease Inferences • Screens, Gene Interactions and Pathways • Introduction to Genomics • Genomics and Chronic Disease • Fundamentals of Mouse Genetics • Gene Targeting and Conditional Genetics in the Mouse</td>
<td></td>
</tr>
<tr>
<td>No Class on Labor Day, Sept 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>Transcription, Epigenetics and RNA</td>
<td>Topic Leaders: Mark Bedford Xiaobing Shi Ambro van Hoof Instructors: Xiaobing Shi Xuetong (Snow) Shen Mark Bedford Taiping Chen Ambro van Hoof Bill Mattox Leng Han</td>
</tr>
<tr>
<td>September 12-16</td>
<td>• Basal Transcription • What is Chromatin & How Does it Regulate Transcription? • The Histone Code: Epigenetic Readers, Writers, and Erasers • DNA Methylation and Epigenetic Inheritance • Big Questions: How are Steps in Gene Expression Executed and Regulated? • Splicing and Alternative Splicing • mRNA 3' End Formation and Alternative Polyadenylation • Transcriptome Analysis Methods • Measuring Steps in Gene Expression</td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>RNA and the Transcriptome</td>
<td>Topic Leader: Ambro van Hoof Instructors: John Hagan Nick Delay Ambro van Hoof Ann-Bin Shyu Jiqiang (Lanny) Ling</td>
</tr>
<tr>
<td>September 19-23</td>
<td>• miRNAs • sRNAs in Prokaryotes • mRNA Degradation • Riboswitches • mRNP Granules: Assembly and Function of P-bodies and Stress Granules • Cutting Edge: mRNA Modifications Obesity and Cancer (m6A, and oligo U,C, and A tails) • From CRISPR RNA Biology to Editing Any Genome Anywhere Anyway</td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>The Birth and Destruction of Proteins</td>
<td>Topic Leader: Catherine Denicourt</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| September 26-30 | • Ribosome Biogenesis and Basic Translation
• Translational Control Mechanisms
• Mechanism and Regulation of Protein Folding
• Pathologies Associated with Protein Misfolding (Neurodegenerative Disorders, Prions)
• Protein Degradation Mechanisms: Ubiquitin-proteasome
• Protein Degradation Mechanisms: Lysosomal and Autophagy
• Pathologies Associated with Defective Protein Degradation Mechanisms | |
| | • Ribosome Biogenesis and Basic Translation
• Translational Control Mechanisms
• Mechanism and Regulation of Protein Folding
• Pathologies Associated with Protein Misfolding (Neurodegenerative Disorders, Prions)
• Protein Degradation Mechanisms: Ubiquitin-proteasome
• Protein Degradation Mechanisms: Lysosomal and Autophagy
• Pathologies Associated with Defective Protein Degradation Mechanisms | |
| | Topic Leaders:
Catherine Denicourt
Guangwei Du
Kevin Morano
Sheng Zhang
Shane Cunha
Ching On Wong | |
| | Instructors:
Catherine Denicourt
Guangwei Du
Kevin Morano
Sheng Zhang
Shane Cunha
Ching On Wong | |

<table>
<thead>
<tr>
<th>Week 6</th>
<th>Protein Structure and Function/Metabolism</th>
<th>Topic Leader: Vasanthi Jayaraman Phillip Carpenter</th>
</tr>
</thead>
</table>
| October 3-7 | • Metabolic Pathway- Energy and Glucose
• Metabolic Pathway: Fatty Acid and Ketone Bodies
• Flipped Classroom: Metabolic Pathways in Diet and Exercise
• Structure Based Control of Protein Function - The Case of Hexokinase and Glucokinase
• Protein Structure Tools- Unnatural Amino Acids
• Skeletal Muscle Metabolism In Health & Disease
• Metabolic Cycles in Health and Disease | |
| | • Metabolic Pathway- Energy and Glucose
• Metabolic Pathway: Fatty Acid and Ketone Bodies
• Flipped Classroom: Metabolic Pathways in Diet and Exercise
• Structure Based Control of Protein Function - The Case of Hexokinase and Glucokinase
• Protein Structure Tools- Unnatural Amino Acids
• Skeletal Muscle Metabolism In Health & Disease
• Metabolic Cycles in Health and Disease | |
| | Topic Leaders:
Vasanthi Jayaraman
Phillip Carpenter
Phillip Carpenter
Vasanthi Jayaraman
Darren Boehning
Irina Serysheva
Alemayehu (Alex) Gorfe
Vihang Narkar
Heinrich Taegtmeyer
Lei Zheng | |
| | Instructors:
Vasanthi Jayaraman
Phillip Carpenter
Darren Boehning
Irina Serysheva
Alemayehu (Alex) Gorfe
Vihang Narkar
Heinrich Taegtmeyer
Lei Zheng | |

<table>
<thead>
<tr>
<th>Week 7</th>
<th>Cell Biology – From the Membrane to the Nucleus and Back Again</th>
<th>Topic Leader: Ilya Levental</th>
</tr>
</thead>
</table>
| October 10-14 | • Overview of Cell Membrane Biology, Cellular Compartment and Organelle
• Cell Membrane Potential and Regulation of Ions and Water Transport Across the Cell Membrane
• Intracellular Vesicle Trafficking
• Protein Sorting: ER to Golgi, Lysosomes, Endocytosis/Exocytosis
• The Mitochondria
• Antigen Presentation Part 1. MHC Class I and II: Protein Trafficking Influences the Outcome of the Immune Response
• Antigen Presentation Part 2. MHC Class I and II: Protein Trafficking Influences the Outcome of the Immune Response
• Nuclear Membrane and Nuclear Pores, Nuclear Membrane Protein Import/Export
• Antibodies Structure, Production and Use in Cell Biology | |
| | • Overview of Cell Membrane Biology, Cellular Compartment and Organelle
• Cell Membrane Potential and Regulation of Ions and Water Transport Across the Cell Membrane
• Intracellular Vesicle Trafficking
• Protein Sorting: ER to Golgi, Lysosomes, Endocytosis/Exocytosis
• The Mitochondria
• Antigen Presentation Part 1. MHC Class I and II: Protein Trafficking Influences the Outcome of the Immune Response
• Antigen Presentation Part 2. MHC Class I and II: Protein Trafficking Influences the Outcome of the Immune Response
• Nuclear Membrane and Nuclear Pores, Nuclear Membrane Protein Import/Export
• Antibodies Structure, Production and Use in Cell Biology | |
| | Topic Leaders:
Ilya Levental
Florian Muller
Greg Lizee
Oleh Pochynyuk
Jeffrey Molldrem
Jiha Kim
Andy Bean | |
| | Instructors:
Ilya Levental
Florian Muller
Greg Lizee
Oleh Pochynyuk
Jeffrey Molldrem
Jiha Kim
Andy Bean | |
Foundations of Biomedical Research Syllabus – Fall 2016

<table>
<thead>
<tr>
<th>Week 8</th>
<th>Cytoskeletal Dynamics and Cell Motility</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 17-21</td>
<td>• Cytoskeletal Networks, the Cell Scaffold</td>
</tr>
<tr>
<td></td>
<td>• Imaging Adhesion and Motility</td>
</tr>
<tr>
<td></td>
<td>• ECM and Integrins</td>
</tr>
<tr>
<td></td>
<td>• Cell: Cell Contacts</td>
</tr>
<tr>
<td></td>
<td>• Small GTPases and Motility</td>
</tr>
<tr>
<td></td>
<td>• Cell Polarity</td>
</tr>
<tr>
<td></td>
<td>• Mechanical Forces in Cellular Adhesion</td>
</tr>
<tr>
<td></td>
<td>• Adhesion, Immune Response & Leukocytes Trafficking</td>
</tr>
</tbody>
</table>

Topic Leader: Andrew Gladden
Instructors: Pierre McCrea
Li Ma
Tomasz Zal
Adriana Paulucci
Joseph McCarty
Pierre McCrea
Jeff Frost
Andrew Gladden
George Eisenhoffer
Randy Johnson

<table>
<thead>
<tr>
<th>Week 9</th>
<th>Cell Cycle and DNA Repair Machinery</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 24-28</td>
<td>• History of Cell Cycle Research</td>
</tr>
<tr>
<td></td>
<td>• The RB-E2F Pathway</td>
</tr>
<tr>
<td></td>
<td>• DNA Replication and Mitosis</td>
</tr>
<tr>
<td></td>
<td>• Checkpoints & DNA Damage Responses</td>
</tr>
<tr>
<td></td>
<td>• DNA Repair I</td>
</tr>
<tr>
<td></td>
<td>• DNA repair II</td>
</tr>
<tr>
<td></td>
<td>• Mutagenesis and Genome Stability</td>
</tr>
<tr>
<td></td>
<td>• DNA Repair III</td>
</tr>
<tr>
<td></td>
<td>• Intrastrand Crosslink Repair</td>
</tr>
</tbody>
</table>

Topic Leader: David Johnson
Instructors:
David Johnson
Helen Piwnica-Worms
Kevin McBride
Margarida Santos
Philip Carpenter
Francesca Cole
Katharina Schlacher

<table>
<thead>
<tr>
<th>Week 10</th>
<th>Guarding the Genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 31 - November 4</td>
<td>• Lectures 1 & 2 TBA</td>
</tr>
<tr>
<td></td>
<td>• The Story of p53 in Cancer</td>
</tr>
<tr>
<td></td>
<td>• All in the Family: Genetic Predisposition to Cancer</td>
</tr>
<tr>
<td></td>
<td>• Clinical Implications of Defective DNA Repair</td>
</tr>
<tr>
<td></td>
<td>• Antigen receptor diversification in adaptive immunity</td>
</tr>
<tr>
<td></td>
<td>• Killing cells softly</td>
</tr>
</tbody>
</table>

Topic Leader: Michelle Barton
Instructors:
Michelle Barton
Joya Chandra
Sean Post
Xiongbin Lu
Vicki Huff
Joya Chandra
Eric Davis
Russell Broaddus
Nancy Gordon

<table>
<thead>
<tr>
<th>Week 11</th>
<th>Extracellular and Intracellular Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 7-11</td>
<td>• Diversity and Conservation in Signaling</td>
</tr>
<tr>
<td></td>
<td>• Genetic Analysis of Signaling: Yeast Pheromone Response</td>
</tr>
<tr>
<td></td>
<td>• GPCRs and Second Messengers</td>
</tr>
<tr>
<td></td>
<td>• Temporal and Spatial Control of Signaling</td>
</tr>
<tr>
<td></td>
<td>• Receptor Tyrosine Kinases and Ras</td>
</tr>
<tr>
<td></td>
<td>• Developmental Signaling Pathways</td>
</tr>
<tr>
<td></td>
<td>• Bacterial Quorum Sensing and Two-Component Signaling</td>
</tr>
<tr>
<td></td>
<td>• Genomic Models of Signaling Networks</td>
</tr>
</tbody>
</table>

Topic Leader: Mike Lorenz
Instructors:
Mike Lorenz
Carmen Dessauer
Michael Galko
Danielle Garsin
Jeff Chang
Week 12
November 14-18

Developmental Biology
- **Fundamental Concepts**: Developmental Biology
- **Gene Regulatory Networks**: Germ Cell Development
- **Germ Layers**: Progenitor Tissues & Differentiation
- **Induction**: Molecular Conversations Between Cells and Tissues
- **Pattern Formation**: Development of Regional Identities in Embryos & Tissues
- **Morphogenesis**: Cell Behaviors to Generate Tissues & Organs
- **Stem Cells**: From Tumors to Pluripotent Stem Cells
- **Homeostasis and regeneration**: Restoring old or damaged tissues
- **Evolution and development**: Mechanisms leading to species-specific traits

Topic Leader: Richard Behringer

Instructors:
- Richard Behringer
- Swathi Arur
- Rachel Miller
- Yoshi Komatsu
- Eric Swindell
- Jichao Chen
- George Eisenhoffer

Week 13
November 28 - December 2

Signaling Systems and Stress
- Intro to Signaling Systems and Stress
- Endocrine Signaling During Stress
- Immune Signaling Principles
- Neural Signaling During Stress
- Immune Signaling During Stress
- Pain-Related Signaling
- Endocrine Signaling Principles
- Signaling and Growth

Topic Leader: Terry Walters

Instructors:
- Nick Justice
- Annemieke Kavelaars
- Dorothy Lewis
- Agi Schonbrunn
- Terry Walters

Week 14
December 5-9

TMC All Stars - Biological Revolution
- Genetic Architecture of Common Chronic Diseases
- Leveraging Epigenetics Toward Therapeutic Development
- Telomeres in Cancer and Aging
- Anthrax: of Mice, Men and Tomato Seedlings

Topic Leader: Eric Swindell

Instructors:
- Eric Boerwinkle
- Michelle Barton
- Ronald DePinho
- Theresa Koehler

The overall goal is to integrate different disciplines (Genetics, Microbiology, Immunology, Neurobiology, Cancer Biology, Therapeutics, Developmental Biology, Physiology, etc.).

Each week will also have Biostats, Critical thinking (e.g., classic papers), Group exercises, and a take home assessment (e.g., design an experiment...pitfalls, controls, paper critique, etc.)