Emerging Concepts in Immunology

August 29 – October 24, 2017

SCRB2 Conference Center

Tuesday/Thursday 3:00 - 4:30 PM
EMERGING CONCEPTS IN IMMUNOLOGY

COURSE DETAILS

GS06 1102 Emerging Concepts in Immunology (2 Credit hours)
Fall Semester (Half Semester)
Course Coordinator: Pamela Wenzel, Ph.D.
Time and Location: Tuesday, Thursday 3-4:30 PM
SCRB2 Conference Center, 7455 Fannin Street

OBJECTIVES

This course will provide an understanding of emerging concepts in immunology. From current literature, students will explore new areas of research in antigen processing, cytokines, development of T and B lymphocytes, antigen recognition by T lymphocytes, cellular activation, and cell interactions. Each student will read and critically assess selected papers in molecular and cellular immunology. Students prepare several oral presentations and gain experience leading scientific discussions in a small group setting. Papers presented in this course will be used as the basis for developing a proposal in the GSBS Scientific Writing course.

Competencies to be acquired in this course include all core competencies of the Immunology Program, with emphasis on critical thinking and presentation skills.
EMERGING CONCEPTS IN IMMUNOLOGY

FACULTY

Coordinator: Pamela Wenzel, Ph.D.
UTHealth Pediatric Surgery/Institute of Molecular Medicine

email: Pamela.L.Wenzel@uth.tmc.edu

Lecturers:

Pamela Wenzel, Ph.D.
UTHealth Pediatric Surgery/Institute of Molecular Medicine

email: Pamela.L.Wenzel@uth.tmc.edu

Gregory Lizee, Ph.D.
MDACC Melanoma Medical Oncology/Immunology

email: glizee@mdanderson.org

Tomasz Zal, Ph.D.
MDACC Immunology

email: tzal@mdanderson.org

Florencia McAllister, M.D.
MDACC Clinical Cancer Prevention

email: FMcAllister@mdanderson.org

Jin Seon Im, M.D., Ph.D.
MDACC Stem Cell Transplantation and Cellular Therapy

email: Jlm@mdanderson.org

Stephanie Watowich, Ph.D.
MDACC Immunology

email: swatowic@mdanderson.org

Qing Ma, Ph.D.
MDACC Stem Cell Transplantation-Research

email: qma@mdanderson.org

Keri Smith, Ph.D.
UTHealth Pathology and Laboratory Medicine

email: Keri.C.Smith@uth.tmc.edu

Laura Bover, Ph.D.
MDACC Genomics Medicine/Immunology

email: lbover@mdanderson.org

Kimberly Schluns, Ph.D.
MDACC Immunology

email: kschluns@mdanderson.org

Michael Curran, Ph.D.
MDACC Immunology

email: MCurran@mdanderson.org

Rick Wetsel, Ph.D.
UTHealth Institute of Molecular Medicine

email: Rick.A.Wetsel@uth.tmc.edu

Jeffrey Actor, Ph.D.
UTHealth Pathology and Laboratory Medicine

email: Jeffrey.K.Actor@uth.tmc.edu

Jagannadha Sastry, Ph.D.
MDACC Immunology

email: jsastry@mdanderson.org
COURSE OUTLINE

<table>
<thead>
<tr>
<th>SESSION</th>
<th>DATE</th>
<th>ROOM</th>
<th>INSTRUCTOR</th>
<th>SESSION TOPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tues Aug 29</td>
<td>2SCR1 room 1</td>
<td>Pamela Wenzel</td>
<td>Cancelled</td>
</tr>
<tr>
<td>2</td>
<td>Thurs Aug 31</td>
<td>2SCR1 room 6</td>
<td>Pamela Wenzel</td>
<td>Cancelled</td>
</tr>
<tr>
<td>3</td>
<td>Tues Sept 5</td>
<td>2SCR1 room 1</td>
<td>Gregory Lizee</td>
<td>MHC, Antigen Presentation</td>
</tr>
<tr>
<td>4</td>
<td>Thurs Sept 7</td>
<td>2SCR1 room 1</td>
<td>Pamela Wenzel</td>
<td>Hematopoiesis</td>
</tr>
<tr>
<td>5</td>
<td>Tues Sept 12</td>
<td>2SCR1 room 1</td>
<td>Tomasz Zal</td>
<td>γδ and Other Non-classical T Cells</td>
</tr>
<tr>
<td>6</td>
<td>Thurs Sept 14</td>
<td>2SCR1 room 1</td>
<td>Tomasz Zal</td>
<td>TCR Immune Synapse</td>
</tr>
<tr>
<td>7</td>
<td>Tues Sept 19</td>
<td>2SCR1 room 6</td>
<td>Jin Seon Im</td>
<td>CD1 Restricted T Cells and Diseases</td>
</tr>
<tr>
<td>8</td>
<td>Thurs Sept 21</td>
<td>2SCR1 room 1</td>
<td>Stephanie Watowich</td>
<td>Dendritic Cells: Development, Function</td>
</tr>
<tr>
<td>9</td>
<td>Tues Sept 26</td>
<td>2SCR1 room 6</td>
<td>Qing Ma</td>
<td>GVL and Tumor Immunotherapy</td>
</tr>
<tr>
<td>10</td>
<td>Thurs Sept 28</td>
<td>2SCR1 room 1</td>
<td>Keri Smith</td>
<td>Mucosal Immunity</td>
</tr>
<tr>
<td>11</td>
<td>Tues Oct 3</td>
<td>2SCR1 room 6</td>
<td>Laura Bover</td>
<td>Monoclonal Antibodies</td>
</tr>
<tr>
<td>12</td>
<td>Thurs Oct 5</td>
<td>2SCR1 room 6</td>
<td>Kimberly Schluns</td>
<td>Memory T Cell Differentiation</td>
</tr>
<tr>
<td>13</td>
<td>Tues Oct 10</td>
<td>SCR1.1025</td>
<td>Michael Curran</td>
<td>Checkpoint Blockade</td>
</tr>
<tr>
<td>14</td>
<td>Thurs Oct 12</td>
<td>2SCR1 room 3</td>
<td>Rick Wetsel</td>
<td>Complement</td>
</tr>
<tr>
<td>15</td>
<td>Tues Oct 17</td>
<td>SCR1.1025</td>
<td>Jeffrey Actor</td>
<td>Inflammation/Innate Immunity</td>
</tr>
<tr>
<td>16</td>
<td>Thurs Oct 19</td>
<td>2SCR1 room 6</td>
<td>Jagannadha Sastry</td>
<td>Vaccine and Adjuvants</td>
</tr>
<tr>
<td>17</td>
<td>Tues Oct 24</td>
<td>2SCR1 room 1</td>
<td>Shao-Cong Sun</td>
<td>Metabolic Regulation of T Cell Function</td>
</tr>
<tr>
<td>18</td>
<td>Thurs Oct 26</td>
<td>2SCR1 room 6</td>
<td>Dorothy Lewis</td>
<td>T Cells in Adipose Tissue</td>
</tr>
<tr>
<td>19</td>
<td>Tues Oct 31</td>
<td>2SCR1 room 1</td>
<td>Florencia McAllister</td>
<td>Tumor Microenvironment</td>
</tr>
</tbody>
</table>

Final Exam: Nov 2 Thurs (2SCR1 room 1)
EMERGING CONCEPTS IN IMMUNOLOGY

GRADING CRITERIA

25% Presentations
 a. Coverage of relevant background literature and identification of critical observations
 b. Identification of critical problems and hypotheses addressed in the paper
 c. Understanding of the experimental design and methods utilized
 d. Presentation, interpretation and discussion of the data
 e. Length and style of presentation

15% In Class Quizzes
 a. Short (5 minute) multiple choice quiz at the beginning of class on papers to be presented – 3 questions per paper

10% Participation/Attendance
 a. Novelty/originality of ideas expressed
 b. Relevance of comments to the issues being discussed
 c. Frequency of productive contributions to discussion

50% Final Exam (in class)
EMERGING CONCEPTS IN IMMUNOLOGY

CRITERIA FOR ORAL PRESENTATIONS: GENERAL COMMENTS

Summary of the OPTEMA approach

\(O = \text{Critical Observations} \) (CO) are trustworthy facts (not hypotheses)

\(P = \text{Problematization: Critical Problems} \) (CP) are (1) based on critical observations and (2) worth solving

\(T = \text{Testable ideas} \) (hypotheses, engineering designs, etc.) potentially solve problems and make specific predictions. Hypotheses are NOT predictions.

\(E = \text{Experimental Design} \) will test the prediction, including logical controls. Designs tests predictions, not hypotheses.

\(M = \text{Materials and Methods} \) to realize the experimental design

\(A = \text{Analysis} \)

1. Coverage of Relevant Background Literature and Identification of Critical Observations

a) Relevant background. This is the information the audience needs to understand

 a. why they should trust the critical observations
 b. why the critical problem is important
 c. why the hypotheses are proposed (the “supporting observations”)
 d. how the hypotheses make the predictions
 e. how the experimental design works
 f. how the methods work

 The background material should not be presented entirely at the beginning of the presentation, but when it is needed.

 By “coverage” we mean your ability to teach the material, which requires you not only to know it, but to understand it well enough to teach others to teach it.

b) Critical observations. These are statements of “fact” that justify the critical problem. They are critical in two senses,

 a. they are decisively factual
 b. they can be made into a critical problem

 Highly effective writers make it very clear what problem they are solving, but most will not be clear about this at all and you will have to reconstruct the CP.

c) When and what to read for background. Read background after you have read the paper through, and identified key questions for yourself. It is reasonable to consult five to ten background papers, mostly chosen from the reference list of the paper; perhaps detailing a key methodology or phenomenon. Another paper might be a review article. You SHOULD check to see if anyone else has recently published in the area. Be sure you understand the methods. You do not have time to present all the background, but you may need it to respond adequately to questions.
2. Identification of Critical Problems and Hypotheses (Testable ideas) Addressed in the Paper

<table>
<thead>
<tr>
<th>Problem-type</th>
<th>Example</th>
<th>Testable ideas</th>
<th>Common Design and prediction types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanistic</td>
<td>How does Y happen?</td>
<td>Mechanistic hypotheses</td>
<td>Necessity: inhibiting M will cause less Y after X</td>
</tr>
<tr>
<td></td>
<td>What is the mechanism of reverse diapedesis?</td>
<td>X causes Y through M</td>
<td>Sufficiency: more M will cause Y independently of X</td>
</tr>
<tr>
<td>Design-Engineering</td>
<td>How can we make Y happen?</td>
<td>Design</td>
<td>Sufficiency: Doing X will cause Y</td>
</tr>
<tr>
<td></td>
<td>How can we increase tumor infiltration by CAR T cells?</td>
<td>Y can be achieved by doing X</td>
<td></td>
</tr>
<tr>
<td>Description/Search</td>
<td>What diagnostic markers are found on cells undergoing reverse diapedesis?</td>
<td>Typically vague</td>
<td>Descriptive studies</td>
</tr>
<tr>
<td></td>
<td>What gene is selectively required for reverse diapedesis?</td>
<td>Markers will belong to a certain set of molecules</td>
<td>Arrays, screens, pull-downs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gene is selectively expressed</td>
<td>Selections</td>
</tr>
</tbody>
</table>

a. **Critical problems.** There are two sets of CP and two sets of hypotheses.
 i. The first or "parent" problem is the one that the paper as a whole addresses. There should be a single parent CP. For example, “How do neutrophils carry out reverse diapedesis?”
 ii. The many critical problems that arise while unfolding of the story. For example, in Fig 1 the authors might find that chemokine X is needed for reverse diapedesis. This creates a new critical problem: “How does chemokine X cause reverse diapedesis?”

b. **Testable Ideas.** If true (effective), the hypothesis (design) solves the problem. If true (effective) the hypothesis (design) predicts certain things will be observed if a certain experimental design is executed appropriately (as verified by controls). Note that:
 i. Predictions are not hypotheses
 ii. Multiple hypotheses can make the same predictions
 iii. Failed predictions do not automatically falsify the hypothesis, because the design or execution of the design could be flawed
3. **Understanding the Experimental Design and Methods Used**

 a. **Design.** This provides the logical conditions that permit the prediction. It is the “methodology”, “strategy” or “approach” used to solve the problem. You should be able to explain the design in a few words: necessity, sufficiency, etc.

 b. **Materials and Methods.**

 i. These refer to the materials and techniques used to carry out the design.

 ii. Explain what your audience needs to know but doesn't already know.

 iii. Be prepared to explain anything.

 iv. Controls are there to make sure that the logical conditions of the test are in place. You need positive controls for cases when you fail to get the predicted result. You need negative and specificity controls for cases when you do get the predicted results.

4. **Presentation, Analysis and Interpretation of the Data**

 a. **Presentation.**

 i. **DO**: Background/Introduction. Set up the parental CO and CP. It is often helpful to make up a graphic which illustrates the central and any competing hypotheses, as well as one to illustrate the critical methodology. Be concise and brief. Be effective. Teach your audience. What do you want them to know at the end of your presentation?

 ii. **DO NOT**: present every figure and supplementary figure.

 b. **Analysis and Interpretation.**

 i. Present the critical data: If there are 7 figures and 4 tables, you may want to use only the three most important figures and the two most important tables.

 ii. Be critical: Decide how solid the important data really are, and let us know what you think.

 iii. Be discriminating: Some experiments are shaky but not critical to the interpretation.

 iv. Be logical: Do NOT say: “Next they did”. Do say, “this result led to a new question or problem which is……”

 v. Future Directions (re-problematization): derive from re-problematizing what is not known.
Future directions (assuming a parent problem of what mediates reverse diapedesis of neutrophils)

<table>
<thead>
<tr>
<th>Type</th>
<th>Comment and example</th>
<th>Future direction and example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caveats</td>
<td>What is uncertain about the findings?</td>
<td>Repeat with another antibody</td>
</tr>
<tr>
<td></td>
<td>The antibody for the adhesion molecule might not be specific.</td>
<td>Demonstrate specificity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use Fc-block</td>
</tr>
<tr>
<td>Unfinished Business</td>
<td>What remains unsolved from the original CP?</td>
<td>What prevents reverse diapedesis during forward diapedesis?</td>
</tr>
<tr>
<td>New critical observations</td>
<td>How can the work be extended deeper into the problem?</td>
<td>What is the ligand for this molecule?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What controls expression or function of adhesion molecule?</td>
</tr>
<tr>
<td>New Directions</td>
<td>What “sibling” or “unrelated” problem does this make me think of solving?</td>
<td>Does reverse diapedesis of PMN occur during multiple sclerosis? (new problem is about MS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do T cells carry out reverse diapedesis? New problem is about T cells.</td>
</tr>
</tbody>
</table>
5. **Length and Style of Presentation**

 a. **Timing.** Time management is one of the most important professional skills. Your listener’s time is valuable to them. If someone else is presenting, they should not be squeezed out of their allotted time, or be forced to present to a tired audience. Even if you have just won the Nobel Prize, keep to your allotted time. For a thirty minute time-slot, plan on about 3 minutes for introduction, and at least five minutes for discussion at the end. Be prepared for some give-and-take during the presentation, but also learn to manage the audience.

 b. **Style.** The whole point of a presentation is to *communicate effectively*. Your style is yours. If it works, it works.

 c. **Connection.** STAND UP!!! Make sure you have the attention of everyone. Bring their eyes up to yours or to the board/screen. Make eye contact with different people, including those in the back of the room.

 d. **Visibility.** If you use a pointer-use it effectively. But remember that not everyone will see your pointer - so make the pointer be a complement to your voice: tell your audience where to look on the slide (“in the upper right panel”, etc.).

 e. **Audibility.** Speak up and clearly. Articulate speech and thoughtful words are useless if no-one can hear you.

 f. **Visual clarity.**

 i. Use LARGE FONTS on the screen so the audience can see – 22 or larger.

 ii. Keep each visual field simple (one figure per screen usually, avoid extraneous visual noise such as background graphics or cute but unneeded graphics).

 iii. Make sure you use high resolution imports from PDF files, or use high resolution jpeg files.

 g. **Demeanor.** You are making a professional presentation. In general, forget “jokes” and “cuteness”. But, if you are a humorous person, there is no need to change that.

 h. **Clarity.** Avoid the use of lab jargon. Keep the ideas simple and straightforward. Use the right word, and don’t mispronounce them. It is unprofessional to make a presentation and not know how to pronounce an author’s name, or the name of a reagent. If you don’t know- ask someone who does know. This is good advice for when you introduce your own students, or a visiting speaker.