IMPORTANT: This syllabus form should be submitted to OAA (<u>gsbs_academic_affairs@uth.tmc.edu</u>) a week before the start of each semester.

NOTE to STUDENTS: If you need any accommodations related to attending/enrolling in this course, please contact one of the Graduate School's 504 Coordinators, Cheryl Spitzenberger or Natalie Sirisaengtaksin. We ask that you notify GSBS in advance (preferably at least 3 days before the start of the semester) so we can make appropriate arrangements.

Term and Year: Summer 2024	Program Required Course: No
Course Number and Course Title:	Approval Code: No
GS12 1442: Principles of Experimental Mouse Pathology	Audit Permitted: Yes
Credit Hours: 2	Classes Begin: May 31, 2024
Meeting Location: GSBS Schissler Library	Classes End: August 2, 2024
Building/Room#: BSRB S3.8351	Final Exam Week: August 9, 2024
WebEx/Zoom Link: N/A	

Class Meeting Schedule

Day	Time
Fridays	10am-12nn CST
Course Director	Instructor/s (Use additional page as needed)
Name and Degree: Fernando Benavides, DVM, PhD	1. Fabien Delerue, PhD
Title: Professor	Institution: MDACC
Department: Epigenetics and Molecular	Email Address: fdelerue@mdanderson.org
Carcinogenesis	2. Manu Sebastian, PhD
Institution: MDACC	Institution: MDACC
Email Address: <u>fbenavid@mdanderson.org</u>	Email Address : <u>mmsebastian@mdanderson.org</u>
Contact Number: 832-750-0136	3. Carlos Perez, PhD
Course Co-Director/s: (if any)	Institution: MDACC
Name and Degree: N/A	Email Address: ciperez@mdanderson.org
Title:	4. Fernando Benavides, DVM, PhD
Department:	
Institution: UTH MDACC	Institution: MDACC
	Email Address: <u>fbenavid@mdanderson.org</u>

se

Course Description:

This 2-credit course is taught during the Summer Semester. A two-hour class will be given on Fridays from 10:00 to 12:00 am at the MD Anderson in Houston. The online learning tool Canvas will be used to distribute presentations and reading assignments. Individual lectures will be limited to 50 minutes. All classes will have 10 minutes break after the first lecture. Some classes include a short video demonstration (e.g., microscopy, necropsy, or imaging procedures), peer discussions, and literature review.

Textbook/Supplemental Reading Materials

• N/A

Course Objective/s:

Upon successful completion of this course:

A challenge for the graduate student is to find and apply the best experimental in vivo approach to investigate and solve a research problem. The purpose of this course is to convey fundamental knowledge needed to perform valid and interpretable research using mouse models. The course will feature a diverse group of instructors covering a wide variety of subjects necessary to understand the importance of the appropriate use of mouse models and how to collect and interpret the results. Each instructor has a strong background on the subject presented. A veterinary pathologist and a veterinary mouse geneticist are included as instructors.

Specific Learning Objectives:

- 1. Students will have learned the basic concepts of mouse biology, embryology, and genetics needed to design in vivo studies.
- 2. Students will have learned about the advantages and disadvantages of the use of the laboratory mouse as an animal model.
- 3. Students will have learned how to responsibly design, conduct, and interpret results using mouse models and will be familiar with the influence of genetic background, strain-related lesions, and environment.
- 4. Students will have been exposed to the state-of-the-art techniques used for the pathological characterization of mouse models.

Student Responsibilities and Expectations:		
Students enrolled in this summer course will be expected to perform the following activities each week.		
 Read, process, and review (study) material from 1 or 2 seminal reviews relating to the week's cancer biology topic. Participate in and contribute to course discussions during lectures. Prepare for and take a midterm and final examination based on the lecture and some reading materials. 		
Students are expected to complete all assigned reading material (reviews and research literature) prior to class. Plagiarism and failure to properly cite scientific literature and other sources will not be tolerated and are grounds for dismissal from the course and further GSBS disciplinary action. Cheating or engaging in unethical behavior during examinations (quizzes and final) will be grounds for dismissal from ther GSBS disciplinary action.		
Grading System: Letter Grade (A-F)		
Student Assessment and Grading Criteria : (May include the following:)		
Percentage Description		
Midterm Exams (50 %)	7/5 – midterm exam will cover materials from the 5 classes.	
Final Exam (50 %)	8/9 – final exam will cover materials from the last 4 classes.	

CLASS SCHEDULE - SEE ATTACHED

Gs12 11442: PRINCIPLES OF EXPERIMENTAL MOUSE PATHOLOGY SUMMER SEMESTER, 2024 (May 31-August 9) CLASSES ON FRIDAYS 10am-12pm

DATE	SUBJECT	INSTRUCTOR	LECTURE
5/31	Introduction	Benavides (40 min)	Introduction to the 2024 Course
	Rodent biology	Discussion (10 min)	Rodent biology, mouse anatomy, biology, and physiology
		Break (10 min)	
	Rodent	Benavides (50 min)	Basic concepts of rodent genetics and systematic
	Genetics	Break (10 min)	
6/7	Mouse Genetics	Benavides (50 min)	Concepts of mouse genetics
0, /	Widdse Geneties	Discussion (10 min)	
	Mutations	Benavides (50 min)	Types of mutations
	Widtations	Discussion (10 min)	Spontaneous mutations
			Chemically induced mutations
			chemically induced inductions
6/14		Delerue (50 min)	Transgenic mice and inducible systems
	Genetically	Break (10 min)	Targeted Mutagenesis using ES-cells (KOs, KIs)
	engineered		Conditional mutant alleles (Cre/loxP and Flp/FRT systems))
	mouse models	Delerue (50 min)	
		Discussion (10 min)	Gene editing using ZFN, TALEN, and CRISPR/Cas9
	1	1	
6/21		Benavides (45 min)	Standardized genetic nomenclature
	Genetic	Break (10 min)	Genetic drift and substrains
	Background		Influence of genetic background
	considerations	Benavides (45 min)	Modifier genes and passenger mutations
		Discussion (20 min)	
	1	1	
6/28	Histology	Sebastian (40 min)	Basic concepts of histopathology
		Discussion (20 min)	
	Mouse develop	Sebastian (50 min)	Basic concepts of mouse developmental biology
	Biology	Break (10 min)	
7/5		EXAM #1	

7/12	Mouse Models of toxicology	Sebastian (50 min) Break (10 min)	Toxicology studies
	Spontaneous	Sebastian (50 min)	Mouse Phenotyping
	lesions on	Discussion (10 min)	Background lesions in C57BL/6 mice
	inbred strains		Background lesions in FVB/N mice
			Background lesions in 129 mice
7/19	Imaging &	Perez (50 min)	Digital pathology and In vivo imaging systems
7715	Digital	Break (10 min)	
	Pathology	Perez (50 min)	
		Discussion (10 min)	
7/26	Mouse Models	Benavides (50 min)	Mouse models of cancer
	of Human	Break (10 min)	
	Disease	Benavides (50 min)	
		Discussion (10 min)	
8/2	IAUCUC	Benavides (50 min)	Databases (e.g., Mouse Genome Informatics; Ensembl;
0,2	databases and	Break (10 min)	Mouse Phenome Database)
	genome	Benavides (50 min)	Environment, housing, and management
	browsers	Discussion (10 min)	IACUC requirements
- 10	1	1	
8/9	EXAM #2		EXAM #2