Syllabus

Feature	Considerations
Instructor	Course Co-Directors:
Information	Peng Wei, PhD; pwei2@mdanderson.org;
	Yisheng Li, PhD; <u>ysli@mdanderson.org</u> ;
	Jian Wang, PhD; jianwang@mdanderson.org;
	• TA:
	Ms. Ziqiao Wang; <u>ZWang21@mdanderson.org</u>
	Office Hours: by appointment
	• TA: Wednesday 4pm-5pm
	Course number and title: GS01 1273 Modern Nonparametrics
	Semester: Spring 2021
	Credit Hours: 3
	• Creat Hours. 5
	• Format: Face-to-face
	• When: Mondays 1:00pm-4:00pm
	• Where: Zoom
	This course seeks to introduce students to the many developments in
	modern nonparametrics, including resampling methods, nonparametric
	and semiparametric regression models that have occurred over the last
	several decades. Topics include the bootstrap, jackknife, cross-
	validation, permutation tests, classification tree, random forests,
	functional data analysis. While the course will focus on applications
	time will be devoted to derivations and theoretical justifications of
	methods. The statistical software R will be used for the homework
	exercises.
	This course is intended primarily for second-year M.S. and Ph.D.
	biostatistics/quantitative sciences students, but is open to other students
	with prerequisites.
Textbook	Required Textbooks:
and Materials	1. Efron, B. and Tibshirani, R. (1994) An introduction to the
	bootstrap. Chapman & Hall: New York.
	2. Ruppert, D., Wand, M.P., Carroll, C.J. (2003) Semiparametric
	regression. Cambridge University Press.
	3. Hastie, T., Tibshirani, R., and and Friedman, J. (2009) The
	Elements of Statistical Learning. 2 nd Edition. Springer-
	Verlag.
	• Lecture notes

	•
Course	Students are expected to participate in-class activities, complete
Expectations	homework assignments on time, apply the methods covered in the course
	to solve a quantitative biomedical problem, and summarize and present
~	the results as a final course project.
Course Learning	• At the end of the course, students should be able to:
Objectives	1. Apply the bootstrap properly to standard error estimation,
	2 A poly the permutation tests properly to independent and
	2. Apply the permutation tests property to independent and dependent data
	3. Choose and apply appropriate nonparametric regression
	techniques to biomedical problems
	4. Report and present results from the application of resampling
	and nonparametric regression techniques
List of Topics	• Topics include the bootstrap, jackknife, cross-validation,
	permutation tests, CART, random forest, nonparametric
	smoothing and regression, and splines.
Learning	• Lectures, homework assignments including computer simulations
Activities	and data analyses, a midterm exam and a final project
	• The statistical software R will be used extensively for in-class
	examples, homework assignments and the final project.
Student	The course will be letter ended. Evolution will be based on
Assessment	• The course will be letter graded. Evaluation will be based on class participation, homework assignments, a midterm and a final
And Grading	project (a written report and a 20-min presentation).
Criteria	• The weights of all components are: homework (25%), midterm
	(30%), final project (45%).
	• Grading Criteria: A: >= 80%, B: <80% and >=70%, C: <70% and >=60%, F: <60%
	• There will be bi-weekly homework assignments. You can work
	with other students on the homework assignments; however, all
	turned in work should be your own. There will be a 20% penalty
	per day for late homework unless you provide a written medical
Dronoquigitog	PU1010 and PU1011 (UT SPU) Theory of Directotistics L & U (or
and/or	• PH1910 and PH1911 (U1-SPH) Theory of Biostatistics I & II (or equivalent) and Linear Regression or Consent of Instructor
Technical	 Majority of the homework assignments will require R
Requirements	programming At least working knowledge of R is required
	http://www.r-project.org/
	•
	•

	•
Policies and Procedures	• Homework assignments allow limited discussions; however, all turned in work should be your own
	• Withdrawal Information: will follow the GSBS general guidelines
	 Incomplete Grades Students must have extenuating circumstances to request an incomplete. Incompletes must be made-up by the end of the following semester or the grade will become a fail.
	• Classroom attendance is expected in person. Part of the grade is based on classroom participation.
	 Academic Dishonesty policies: All as in HOOP are followed Plagiarism is unacceptable and will result in an automatic fail for the class and further action if the GSBS determines this is necessary.
	 Tentative course calendar: Week 1: Review of probability and statistics; Empirical distribution and plug-in estimators (Wei)
Course Calendar SEPARATE DOCUMENT	 Week 2: Bootstrap estimate of standard error (Wei) Week 3: Bootstrap for regression models; confidence intervals (Wei) Week 4: Confidence intervals (Wei)
	 Week 5: Permutation and bootstrap-based hypothesis testing (Wei) Week 6: Miscellaneous topics in bootstrap; take-home midterm exam (Wei) Week 7: Tree based methods (Wang)
	 Week 8: Tree based methods (Wang)
	• Week 9: Review of linear and linear mixed models (Li)
	• Week 10: Scatterplot smoothing; penalized splines (Li)
	 Week 11: Penalized spilles (Li) Week 12: Seminarametric models (Li)
	 Week 12: Semiparametric models (Li) Week 13: General and generalized additive models (Li)
	• Week 14: Final project presentation (Wei, Wang, Li)