### **GS02 1052 – Imaging Science**

**Course description:** This course provides a concise and coherent review of some commonly-encountered topics in applied mathematics, with a particular emphasis on their applications and relevance to imaging science. The course covers and is equally divided into two major sections: (i) image analysis methods and (ii) Fourier and wavelet transforms. Our image analysis approach provides a formalism for image registration, image reconstruction, image segmentation, and machine learning.

### **Learning objectives:**

- Develop a mathematical formalism for approaching some commonly encountered problems in medical physics
- Interpret multiple distance measures for identifying accurate solutions
- Apply the mechanics of a neural network for image segmentation
- Understand common computational techniques for solving optimization problems inherent to image registration and image reconstruction
- Understand the mathematical formulation, properties, and limitations of Fourier transforms (continuous and discrete) and wavelet transforms and how they relate to some medical physics problems

Semester Begins: Monday, Aug. 30, 2021

**Time and location:** 11:00am-12:00pm (Tuesday, Friday) via zoom

**Syllabus:** 

| Class      | Instructor | Topic                                                              |
|------------|------------|--------------------------------------------------------------------|
|            |            |                                                                    |
| 1 (8/31)   | Fuentes    | 1. Preliminaries - Algorithm Complexity, BLAS                      |
| 2 (9/3)    | Fuentes    | 2. Vector and metric spaces                                        |
| 3 (9/7)    | Fuentes    | 3. Mutual Information                                              |
| 4 (9/10)   | Fuentes    | 4. Entropy                                                         |
| 5 (9/14)   | Fuentes    | 5. Linear Independence, Equivalence of Norms                       |
| 6 (9/17)   | Fuentes    | 6. Linear Operators, Convolution                                   |
| 7 (9/21)   | Fuentes    | 7. Image Segmentation                                              |
| 8 (9/24)   | Fuentes    | 8. Analysis of Neural Network Structure                            |
| 9 (9/28)   | Fuentes    | 9. Rank and Nullity, Bounded Operator, Stability of Linear Systems |
|            |            |                                                                    |
| 10 (10/1)  | Fuentes    | 10. Inner Product, Orthogonality, Eigen-formulation                |
| 11 (10/5)  | Fuentes    | 11. Optimization Characterization of Solution                      |
|            |            |                                                                    |
| 12 (10/8)  | Fuentes    | 12. Line search, Newton-CG Trust-Region Methods                    |
| 13 (10/12) | Fuentes    | 13. Least Square, QR Decomposition                                 |

| 14 (10/15) | Fuentes  | 14. L1 minimization                                                                                                      |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------|
| 15 (10/19) | Fuentes  | 15. exam on optimization                                                                                                 |
| 16 (10/22) | Mirkovic | 1. Where Nature does or calls for FT, definition of FT, notations, symmetry and FT, interpretation of FT                 |
| 17 (10/26) | Mirkovic | 2. Some useful functions and calculating their FT                                                                        |
| 18 (10/29) | Mirkovic | 3. Convolution, correlations, the central limit theorem                                                                  |
| 19 (11/2)  | Mirkovic | 4. LTI systems, more on convolution, FT as a linear system, what's special about $exp(-i2\pi xy)$ ?                      |
| 20 (11/5)  | Mirkovic | 5. Convolution theorem and other Fourier theorems                                                                        |
| 21 (11/9)  | Mirkovic | 6. The $\delta\text{-function},$ distributions/generalized functions, re-defining FT                                     |
| 22 (11/12) | Mirkovic | 7. Discrete Fourier Transform, cyclic convolution                                                                        |
| 23 (11/16) | Mirkovic | 8. The Fast Fourier Transform algorithm                                                                                  |
| 24 (11/19) | Mirkovic | 9. The Sampling Theorem, ghost function, and Nyquist frequency                                                           |
| 25 (11/23) | Mirkovic | 10. Drawbacks of FT, wavelets, and continuous wavelet transforms, wavelet transform as a cross-correlation               |
| 26 (11/30) | Mirkovic | and constant-Q filtering 11. Discrete wavelet transforms and orthogonal wavelet decomposition, multi-resolution analysis |
| 27 (12/3)  | Mirkovic | 12. more on MRA, scaling function, digital filtering                                                                     |
| 28 (12/7)  | Mirkovic | 13. Haar wavelets, filters, filter banks, multistage filter banks, and perfect reconstruction                            |
| 29 (12/10) | Mirkovic | 14. Medical physics applications of Fourier and wavelet transforms                                                       |
| ` ,        |          |                                                                                                                          |
| 30 (TBD)   | Mirkovic | 15. Exam on transforms                                                                                                   |

# Grading:

Homework: 40%; Exams (in-class): 60%

## **Major references:**

- [1] Jorge Nocedal and Stephen J. Wright. *Numerical optimization*, 2<sup>nd</sup> edition, Springer Verlag, 1999.
- [2] Ronald Bracewell, *The Fourier transform and its applications*, 3<sup>rd</sup> edition, McGraw Hill, 2000.

### **Additional references:**

- [1] Michael Greeberg, Foundations of Applied Mathematics, Prentice Hall, 1978
- [2] E. Kreyszig, Introductory functional analysis with applications, volume 21. Wiley, 1989

Holidays: Labor Day 9/6/2021; Thanksgiving 11/25-26/2021