GS14 1223 - "Neurocircuits and Behavior" – Course Syllabus

Directors: Dr. Qingchun Tong (Qingchun.Tong@uth.tmc.edu) Dr. Fabricio Do Monte (Fabricio.H.DoMonte@uth.tmc.edu)

Class Time: Tue and Thu, 9:00 - 10:30 A.M. Room MSE R649

Course description

This is an advanced course aimed at students interested in systems neuroscience. The course will be divided into three modules: 1) new technologies in neuroscience; 2) functional neural circuits; and 3) manuscript peer review process. During the new technologies module, the students will be exposed to a basic introductory lecture about new techniques that are being actively used in current neuroscience research. In the following class, all students will read a scientific article about one of the techniques, and one of the students will lead the scientific discussion. During the functional neural circuits module, students will be exposed to an introductory lecture about functional neuroanatomy with a special emphasis on behavioral control. In the following class, the students will discuss a representative recent article that applies the previously learned techniques to identify neural circuits and/or cellular mechanisms underlying different types of behavior. These articles will serve as example cases to introduce new development in neuroscience. Given the vast literature on neural circuits and function, students will pre-select three articles directly related with the previous class, and the entire group will decide which article is most relevant for the group discussion. All the article presentations will be in the form of journal club discussion. The final module will be focused on the manuscript peer review process. During this module, students will select relevant unpublished manuscripts that are publicly accessible (e.g., BioRxiv), and will independently read, analyze, and evaluate the manuscripts by identifying strengths and weaknesses related to study design, technical approaches, data analysis and interpretation.

SCHEDULE

Module 1. New Technologies in Neuroscience

General course introduction and group/material distribution (Dr. Fabricio Do Monte & Dr. Qingchun Tong) (February 4th)

- <u>Genetic manipulations I (Dr. Qingchun Tong)</u> Lecture: Introduction to the generation of knockout and transgenic rodents. (February 6th) Article discussion (February 11th)
- <u>Genetic manipulations II (Dr. Sheng Zhang)</u> Lecture: Ground rules of CRISPR/RNA interference. (February 13th) Article discussion (February 18th)
- Brain activity manipulations I (Dr. Fabricio Do Monte) Lecture: Advances on pharmacology, neurotransmitters, neuropeptides and their receptors. (February 20th) Article discussion (February 25th)

- 4. <u>Brain activity manipulations II (Dr. Fabricio Do Monte)</u> Lecture: Introduction to optogenetics, chemogenetics, deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS). (February 27th) Article discussion (March 3rd)
- 5. <u>Neuroanatomical tools (Dr. QingchunTong)</u> Lecture: Introduction to neural tracing and immunohistochemical methods. (March 5th) Article Discussion (March 10th)
- Brain activity monitoring in laboratory animals (Dr. Fabricio Do Monte) Lecture: Fundamentals of single-unit recordings, fiber photometry, 2-photon Ca2+ imaging, and microendoscopy. (March 12th) Article discussion (March 17th)
- Brain activity monitoring in humans (Dr. Francesco Versace) Lecture: Principles of functional magnetic resonance (fMRI), diffusion tensor imaging (DTI), electroencephalography (EEG). (March 19th) Article discussion (March 24th)

Module 2. Functional Neural Circuits

- <u>Hypothalamus function in feeding (Dr. Qingchun Tong)</u> *Lecture*: Introduction to hypothalamic functions with special focus on feeding behavior. (April 2nd) Article Discussion (April 7th)
- 9. <u>Amygdala and emotion (Dr. Fabricio Do Monte)</u> Lecture: Introduction to amydalar functions with special focus on fear/anxiety. (April 9th) Article Discussion (April 14th)
- Mesocorticolimbic circuits modulating reward behavior (Dr. Scott Lane) Lecture: The mesocorticolimbic dopaminergic system in the control of reward seeking. (April 16nd) Article Discussion (April 21st)
- 11. <u>Cortical circuits in cognition and decision-making (Dr. Fabricio Do Monte)</u> Lecture: Cortico-hippocampal pathways modulating learning and memory: from place cells and engram to choice behavior. (April 23rd) Article Discussion (April 28th)
- <u>The Brain Stem function (Dr. Michael Zhu)</u> *Lecture*: The role of midbrain, pons and medulla in basic functions and brain-body communication. (April 30th) Article Discussion (May 5th)
- <u>Gut-Brain interactions (Dr. Qingchun Tong)</u> Lecture: The crosstalk between central and peripheral nervous system: the microbiota as a major player. (May 7th) Article Discussion (May 12th)

Module 3. Manuscript Peer Review process

<u>1. Review of publicly accessible manuscripts (Dr. Fabricio Do Monte & Dr. Qingchun Tong)</u> (May 19th, May 21st, May 26th, May 28th)

Manuscript Review 1, 2, 3 and 4: The students will take turns to present their peer reviews on one pre-selected manuscript each lecture. A total of 4 manuscripts will be reviewed. According to the number of participants, the students may be divided into groups to present.