Skip to Content

Chun Yang

Alumnus
Advisor: Heidi Kaplan, Ph.D.

Initiation of Myxococcus xanthus multicellular development requires both nutrient limitation and high cell density. The extracellular signal, A signal, which consists of a set of amino acids at specific concentrations, serves as a cell density signal in M. xanthus early development. A reporter gene, designated 4521, that requires both starvation and A signal for developmental expression was used to identify mutations in the signal transduction pathways. A group of point mutations located in the chromosomal sasB locus that bypasses both requirements was previously isolated. One of these point mutations, sasB7, was mapped to the sasS gene, which is predicted to encode a transmembrane histidine protein kinase required for normal development. SasS is a positive regulator of 4521 and a candidate of A signal sensor. This dissertation continues the characterization of the sasB locus, focusing on the sasR gene and the functional relationships of SasS and SasR.

The sasR gene is located 2.2-kb downstream of sasS. It is predicted to encode an NtrC-like response regulator, which belongs to the family of sigma54 transcriptional activators. SasR is a positive regulator of 4521 gene and is required for normal development. The sasR mutant displays phenotypes similar to that of sasS mutant. Both SasS and SasR are required for the A signal-dependent 4521 expression. Genetic epistasis analysis indicates that SasR functions downstream of SasS. Biochemical studies shows that SasS has autokinase activity, and phosphorylated SasS is able to transfer its phosphate to SasR. We propose that SasS and SasR form a two-component signal transduction system in the A signal transduction pathway.

To search for the possible genes regulated by SasS and SasR, expression patterns of a group of developmental genes were compared in wild-type and sasS null mutant backgrounds. SasS and SasR were found to positively regulate sasN and 4521. The sasN gene was previously identified as a negative regulator of 4521, located at 174-bp downstream of sasR. It is required for normal fruiting body development. Based on the above data, a regulatory network consisting of sasS, sasR, sasN, and 4521 is hypothesized, and the interactions of the components in this network can now be further studied.

Search pubmed for papers by C Yang and HB Kaplan

Research Info

The SasS-SasR Two-Component Signal Transduction System Required for Early Myxococcus xanthus Multicellular Development