In addition to the general GSBS course requirements, the QS Program requires the following courses:
- Introduction to Bioinformatics GS01 1143
- Biostatistics for Life Sciences GS14 1612 (except for Biostatistics Track)
- Quantitative Sciences Student Seminar Series GS01 1031 (enroll every fall semester unless student has a direct course conflict)
QS students are also expected to take courses required by one of the Program's four tracks as listed in the section below.
Program course requirements for MS students:
- GS01 1143 Introduction to Bioinformatics
- GS14 1612 Biostatistics for Life Sciences
- GS01 1031 Quantitative Sciences Student Seminar
Students who declare a Secondary Area of Concentration in Quantitative Sciences are required to take:
All of the QS program required courses or equivalent quantitative courses on a case-by case basis as approved by the Program Director
- You will be required to add a QS faculty to your advisory committee
- Please reach out to the QS Director for any further questions or concerns
Quantitative Sciences Program Prerequisites:
- Biostatistics Track – background requirements: 1) college-level calculus 2) linear algebra 3) and statistics. It is highly recommended that students have an MS degree in Statistics or Biostatistics.
- Bioinformatics/Systems Biology/Quantitative Genomics Tracks – experience with programming in R or Python is highly recommended.
For questions regarding the curriculum for the Quantitative Sciences program, please email [email protected]
Quantitative Sciences Tracks
Candidacy Exam
Quantitative Sciences (QS) Program students are required to take an on-topic candidacy exam in which the research proposal is based on the student's project. The format follows the GSBS on-topic format and also includes a breadth of knowledge component. Time at the end of the exam will be used for each examiner to ask one breadth of knowledge question, plus follow-up questions as warranted.
The question guidelines are as follows:
- topics covered in class the student has already taken
- topics not already contained in the students grant proposal
- at least one biology or clinical practice-based question, as appropriate
- should be general questions about concepts that lead to follow-up that examines the boundaries of the student’s knowledge and ensures student has a firm understanding of basic principles of the field
- one question per examiner; 20 minutes total at the end of the exam
Please see the list of the Quantitative Sciences Program Candidacy Exam Committee Members below.
- Students should select 2 members from the list below to be on their exam committee (can select any 2 from the list below)
- Students should select their exam committee chair from this list
Candidacy Exam Committee Members:
Jeff Chang, PhD
Traver Hart, PhD
Kim-Anh Do, PhD
Eduardo Vilar Sanchez, MD, PhD
Goo Jun, PhD
Xiaodong Zhang, PhD
Peng Wei, PhD
Linghua Wang, PhD
Ruitao Lin, PhD
Ziyi Li, PhD
James Long, PhD
Program Requirements
Course Descriptions
-
Basic and Translational Cancer Biology
Course Detail
GS04 1235 (5 credits)
SpringThis Cancer Biology Core course aims to consolidate essential knowledge of human cancer biology, providing insights into disease development, multifaceted molecular signatures, diagnostics, and therapeutics. It will utilize seminal articles in the field of cancer biology, primary research publications, and incorporate the expertise of GSBS faculty to convey foundational information and the latest advancements in basic, translational, and clinical cancer research.
Auditing this is permitted with Course Directors' approval.
>> Curriculum Committee commended course for Academic Year 2020-2021 <<
-
Biostatistics for Life Scientists
Course Detail
GS14 1612 (2 credits)
SpringThis is an entry-to-intermediate level course of biostatistics aimed at scientists in the life sciences. During the first half of the semester, the course will introduce students to the basic concepts and statistical tests that are routinely encountered in analyzing scientific data in designed experiments, as opposed to the analysis of clinical or epidemiological type data. Following an introduction to probability, students will learn what statistical tests are appropriate and how to run them. Emphasis is on intelligent usage rather than mathematical formality. Standard tests such as t, z,
chi squared , ANOVA and regression analyses will be learned, as well as how power analyses and calculating sample size is performed. During the second half of the semester, advanced topics in life sciences, including Poisson distributions, clustering methods and multidimensional analyses will be covered. Another goal of this course will be to build familiarity with the basic R toolkit for statistical analysis and graphics. -
Foundations of Biomedical Research for Quantitative Students
Course Detail
GS21 1018 (7 credits)
FallEnrollment in this course is limited to GSBS first-year and second-year students who will pursue the quantitative degree track.
This course will provide incoming graduate students with a broad overview of modern biomedical sciences, spanning historical perspectives to cutting edge approaches. The course combines traditional didactic lectures and interactive critical thinking and problem solving exercises to provide students with a strong background in fundamental graduate-level topics including genetics, molecular and cellular biology, biochemistry, physiology, developmental biology and biostatistics. This is the GSBS Core Course which will be graded pass/fail and together with Introduction to Biostatistics and Bioinformatics (GS01 1033) fulfills the GSBS breadth requirement for quantitative-track students.
>> Curriculum Committee Commended Course for Academic Year 2021-2022 <<
-
Foundations of Statistical Inference II
Course Detail
GS01 1283 (3 credits)
SpringThis is the second semester course in a two-semester sequence in mathematical statistics. The course topics include random variables, distributions, small and large sample theorems of decision theory and Bayesian methods, hypothesis testing, point estimation, and confidence intervals; also topics such as exponential families, univariate and multivariate linear models, and nonparametric inference will also be discussed. This course is cross-listed at Rice STAT 533. The venue of the course will be at Rice University. Audit is permitted with Course Director's consent.
-
Genetics and Human Disease
Course Detail
GS11 1013 (3 credits)
FallThis course introduces principles and methods of human genetic analysis with special reference to the contribution of genes to our burden of disease. Although molecular, biochemical and morphogenic processes controlled by genes will be briefly surveyed, the aim is to describe the analytical processes whereby genetic mechanisms are inferred and genes located on chromosomes.
-
Introduction to Bioinformatics
Course Detail
GS01 1143 (3 credits)
SpringThis course is intended to be an introduction to concepts and methods in bioinformatics with a focus on analyzing data merging from high throughput experimental pipelines such as next-gen sequencing. Students will be exposed to algorithms and software tools involved in various aspects of data processing and biological interpretation. Though some prior programming experience is highly recommended, it is not a requirement.
-
Introduction to Biostatistics and Clinical Trials
Course Detail
GS01 1033 (3 credits)
SpringThis course is a one-semester overview of statistical concepts most often used in the design and analysis of biomedical studies. It provides an introduction to the analysis of biomedical and epidemiological data. The focus is on non-model-based solutions to one sample and two sample problems. The course also includes an overview of statistical genetics and bioinformatics concepts. Because this course is primarily for statistics majors, the applied methods will be related to theory whenever practical. Students will gain experience in the general approach to data analysis and in the application of appropriate statistical methods. Emphasis will be on the similarity between various forms of analysis and reporting results in terms of measures of effect or association. Emphasis will also be given to identifying statistical assumptions and performing analyses to verify these assumptions. Because effective communication is essential to effective collaboration, students will gain experience in presenting results for statistically naive readers.
-
Introduction to Statistical Genetics and Bioinformatics
Course Detail
GS11 1113 (3 credits)
FallThis course is designed as an introduction to statistical genetics/computational biology, and serves as the entry point to several courses in this area. It reviews the key statistical concepts and methods relevant to statistical genetics, discusses various topics that have significant statistical component in genetics, particularly in population and quantitative genetics. Topics include estimation of gene frequencies, segregation analysis, test of genetic linkage, genetics of quantitative characters, inheritance of complex characters, forensic science and paternity testing, phylogeny and data mining. This course is cross-listed at School of Public Health (PH1986L). The venue will be at School of Public Health.
-
Modern Nonparametrics
Course Detail
GS01 1273 (3 credits)
SpringThis course seeks to introduce students to the many developments in modern
, including resampling methods, nonparametric and semiparametric regression models that have occurred over the last several decades. Topics include the bootstrap, jackknife, cross-validation, permutation tests, classification tree, random forests, nonparametric smoothing and regression, spline regression, and functional data analysis. While the course will focus on applications, time will be devoted to derivations and theoretical justifications of methods. The statistical software R will be used for the homework exercises.nonparametrics -
Quantitative Sciences Student Seminar Series
Course Detail
GS01 1031 (1 credits)
FallThis series is held bi-weekly for students to present their research project in front of their peers and program faculty. The focus of the session is for the students to practice presenting their project to a varied audience of peers and mentors. Attendees should be prepared to ask questions of the speaker and to provide constructive criticism. This is a required course for all QS Program students and participation is mandatory. All QS students must register for this course every semester unless the student has a direct course conflict. QS-affiliated students are expected to give a minimum of two talks; one pre-candidacy and one post-candidacy, and secondary ARC students are expected to give a minimum of one talk.
-
Statistical Communication, Consulting, and Collaborative Data Science
Course Detail
GS01 1022 (2 credits)
SpringThis course is designed to help students build essential statistical communication skills that are often underemphasized in traditional training. It focuses on preparing students to collaborate effectively with researchers from diverse backgrounds by teaching them how to:
- Effectively interview collaborators to understand their research questions and objectives,
- Articulate mutual goals and expectations specific to statistical consulting and interdisciplinary collaboration,
- Define statistical objectives and deliverables that can guide the research process, and
- Provide regular progress updates in a clear and actionable manner.
Through two core components—a consulting clinic and a project-based learning curriculum—students gain hands-on experience in applying statistical and data science knowledge while refining their communication and collaboration skills.
In the consulting clinic, students offer pro bono statistical consulting services to UTHealth/MDA community researchers, working under instructor supervision to apply these skills in real-world settings. The project-based learning component focuses on project scoping, collaborative practices, and reproducible workflows, equipping students with tools to translate research questions into actionable solutions and foster productive interdisciplinary collaborations.
This course will prepare students for professional collaborations in academic and industry settings.
Prerequires: Students are expected to have knowledge in basic Statistics Inference, Probability, and Linear Regression. Prior programming experience in R or Python is required.
Note: Students who are interested in the course but not sure whether they meet the prerequisites can contact the course directors. If the registration number goes above 12, the course directors will make decisions on who to admit to the course.
Priorities will be given to QS program 1st and 2nd year PhD students and those who meet the prerequisites. The directors will provide guidance on preparing the prerequisites, through taking other basic statistical courses in class or through Coursera courses, for those who are interested in taking it in future.
-
Survival Analysis
Course Detail
GS01 1023 (3 credits)
SpringSurvival data are commonly encountered in scientific investigations, especially in clinical trials and epidemiologic studies. In this course, commonly used statistical methods for the analysis of failure-time data will be discussed. One of the primary topics is the estimation of survival function based on censored data, which include parametric failure-time models, and nonparametric Kaplan-Meier estimates of the survival distribution. Estimation of the cumulative hazard function and the context of hypothesis testing for survival data will be covered. These tests include the
log rank test, generalized log-rank tests, and some non-ranked based test statistics. Regression analysis for censored survival data is the most applicable to clinical trials andapplied work. The Cox proportional hazard mode, additive risk model, other alternative modeling techniques, and new theoretical and methodological advances in survival analysis will be discussed. -
Topics in Clinical Trials
Course Detail
GS01 1813 (3 credits)
FallThis course will provide an overview of methods for the design and analysis of clinical trials. Topics will include fundamental principles and commonly used designs for phases I, II and III trials. Advanced topics will include flaws with many conventional methods, hybrid designs, dealing with multiple outcomes, bias correction, precision medicine, and Bayesian methods. This course is cross-listed at Rice University as STAT 630.